
CrossLanguageSpotter: A Library for Detecting Relations
in Polyglot Frameworks

Federico Tomassetti
Politecnico di Torino,

Turin, Italy
federico.tomassetti@polito.it

Giuseppe Rizzo
Università di Torino, Turin, Italy
EURECOM, Sophia Antipolis,

France
giuseppe.rizzo@di.unito.it

Raphaël Troncy
EURECOM,

Sophia Antipolis, France
raphael.troncy@eurecom.fr

ABSTRACT
Nowadays, most of the web frameworks are developed us-
ing different programming languages, both for server and
client side programmes. The typical scenario includes a
general purpose language (e.g. Ruby, Python, Java) used
together with different specialized languages: HTML, CSS,
Javascript and SQL. All the artifacts are connected via dif-
ferent types of relations, most of which depend on the adopted
framework. These cross-language relations are normally not
captured by tools which require the developer to learn and
to remember those associations in order to understand and
maintain the application. This paper describes a library for
detecting cross-language relations in polyglot frameworks.
The library has been developed to be modular and to be eas-
ily integrated in existing IDEs. The library is publicly avail-
able at http://github.com/CrossLanguageProject/crosslanguagespotter.

Categories and Subject Descriptors
D.2.6 [Programming Environments]: [Programmer work-
bench]

Keywords
Polyglot development, Cross-language relations, Tool sup-
port

1. INTRODUCTION
Modern programming practices include the integration of

pieces of code coming from very diverse frameworks where
the developer aims to better exploit the strengths of different
programming languages and existing resources. IDEs1 of-
fer support to identify inconsistencies between two artifacts
written in the same language and to enable code refactoring

1Integrated Development Environment such as http://www.

eclipse.org

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW’14 Companion, April 7–11, 2014, Seoul, Korea.
ACM 978-1-4503-2745-9/14/04..

of embedded languages such as Javascript2. However, the
developer is often left on his own when it comes to cross-
language relations. Without refactoring support, the devel-
oper has to replicate manually the updates in all related
artifacts. Without navigation support, cross-language ref-
erences are not immediately visible, and the developer has
to know and remember the cross-language rules determin-
ing the relations and to manually navigate to other files for
retrieving related information. Without validation support,
a broken link remains invisible.

A preliminary analysis on a sample of over 2,500 GitHub
projects reports that 96% of projects are polyglot by na-
ture, i.e. they use more than one language (considering pro-
gramming languages, scripting languages, data languages,
etc.) and nearly 2 projects out of 3 make use of more than
one programming language. If this scenario is common in
the majority of projects, this problem is even accentuated
within web frameworks. Figure 1 shows two artifacts, writ-
ten in different languages, from the angular-puzzle project3

linked by cross-relations. The term title appears twice in
index.html and five times in app.js. The first appearance in
index.html is related to the first two appearances in app.js
while the remaining instances in the two files are also re-
ciprocally related. They can be intuitively distinguished on
the basis that the first group of instances is hosted in the
context of types, while the second is hosted in the context
of puzzles. The role of the context is what makes hard to
automatically distinguish between related pairs of elements
and pairs which are not related, even if they are represented
by the same identifier.

We believe that the ability to detect automatically cross-
language relations is worth to be explored for two main rea-
sons: i) cross-language relations are difficult to formalize
since they are related to the frameworks implementation
and they cannot generally be translated into clear rules; ii)
frameworks keep evolving and, as they evolve, the rules for
cross-language relations change. Since our approach lever-
ages on the semantics of the involved artifacts, it naturally
adapts without manual work.

In this paper, we describe a library that automatically
detects cross-language relations leveraging on the semantics
of the container artifacts. This approach has been tested to
spot relations in an existing web framework and we observed
that it is able to detect cross-language relations with 92.2%
of F1 [5].

2See for example http://www.sublimetext.com together with
https://github.com/s-a/sublime-text-refactor
3https://github.com/pdanis/angular-puzzle

<ul id="types">!
!<li ng-repeat="t in types" ng-class="{'selected': t.id == type}">!
! !<a ng-href="#/{{t.id}}">{{t.title}}!
!!

!

var types = [!
 { id: 'sliding-puzzle', title: 'Sliding puzzle' },!
 { id: 'word-search-puzzle', title: 'Word search puzzle' }!
];!

index.html	

app.js	

app.controller('slidingAdvancedCtrl', function($scope) {!
 $scope.puzzles = [!
 { src: './img/misko.jpg', title: 'Miško Hevery', rows: 4, cols: 4 },!
 { src: './img/igor.jpg', title: 'Igor Minár', rows: 3, cols: 3 },!
 { src: './img/vojta.jpg', title: 'Vojta Jína', rows: 4, cols: 3 }!
];!
});!

<div ng-repeat="puzzle in puzzles">!
!<h2>{{puzzle.title}}</h2>!
!…!

</div>!

Figure 1: Example of cross language relations orga-
nized in hierarchies.

2. RELATED WORK
Three approaches are usually adopted for detecting cross-

language relations: i) developing specific IDE support, ii)
substituting existing languages with families of integrated
languages, iii) implementing proper language integration in-
side language workbenches. The first approach was adopted
by Pfeiffer et al. [2, 3]: they implemented different proto-
types integration tool support for cross-language relations
into mainstream IDEs named as TexMo and Tengi. An
example of family of languages comes from Groenewegen
et al. [1]: upon observing that in a single web applica-
tion project, the amalgam of languages used are typically
poorly integrated, they proposed the adoption of a unique
language to model the different concerns of web applica-
tions: WebDSL. Finally, language integration in the context
of Language Workbenches is described by Tolvanen et al. [4].
In this work, they describe their experience in integrating
Domain Specific Modeling (DSM) languages. They consid-
ered only DSM realized in the context of the MetaEdit+
system, without integration with GPLs. GPLs integration is
instead possible in another Language Workbench: Jetbrains
MPS. An example in this direction is described in [6]. In-
tegration in mainstream IDEs has the great advantage to
leverage environments which are already familiar to most
of the developers, but they require the implementation of
specific support for each single framework considered.

3. IMPLEMENTATION
CrossLanguageSpotter is a library designed to operate with

different languages. Currently, Java, Ruby, Javascript, XML,
HTML, and Properties are supported. First, the library
builds the models from the source code files (Abstract Syn-
tax Trees - AST). It looks then for relation pairs, which are
held by shared ids (such as name of variables or name of
functions that we term entities) among all projects artifacts
written in different languages. The library extracts pariwise
the contexts from the two artifacts that surround a shared
id, and computes the similarity indexes. Those values are
used as inputs of a classifier, that, finally, gives a Boolean
decision regarding whether a relation actually exists or not.

3.1 Components and general design
The main language chosen for the implementation of Cross-

LanguageSpotter is JRuby. The library integrates Codemod-

els4 for building ASTs. Codemodels offers support for differ-
ent languages, and it is based on the same meta-metamodeling
facility (based on an RGen, a Ruby clone of EMF). New plu-
gins for Codemodels can be conveniently developed by re-
using existing wrappers written either in Java or Ruby (since
Codemodels is written in JRuby). CrossLanguageSpotter
can navigate all the ASTs provided looking for pairs of nodes
containing the same identifiers. When it founds such pairs,
it calculates a set of 10 features (see Table 2 in [5], which
are then used by a Random Tree classifier to classify real
cross-language relations from pair of nodes having the same
identifier. The classifier is based on Weka5, a well-known
Java library for machine learning. The classifier needs to be
trained providing examples of classification.

3.2 Core modules
The core components of the proposed library are an i)

AST builder and ii) a Relation spotter.

3.2.1 AST builder
The library defines a common representation of ASTs named

Codemodels. Any supported language has its own adapter.
An adapter provides a language metamodel and a parser.
The language metamodel complies with the Codemodels spec-
ifications. From the source code, the parser produces an
AST compliant to the language specific metamodel (and in-
directly to Codemodels). Later in the paper, we refer to this
parser as ls-parsers.

A ls-parser is normally implemented as a wrapper around
an existing parser. The wrapper converts the AST obtained
from the original parser (o-parser) to a proper instance of
the Codemodels-compliant metamodel. The library being
based on JRuby, parsers written either in Ruby or Java can
be conveniently wrapped. As a reference, the efforts to wrap
a Java parser in Codemodels are quantifiable to write 528
lines of JRuby code, while wrapping a Javascript parser re-
quires 873 lines6.

The first step in processing a file is to invoke the ls-parser
obtaining an AST. Later, this AST is inspected to verify the
presence of other language utterances. Typical examples in-
clude the presence of Javascript code embedded in an HTML
document (e.g. in attribute values or DOM nodes) or the
inclusion of SQL statements in Java string literals. When
utterances of other languages are found, they are parsed,
usually with variants of the corresponding ls-parser. Those
variants are able to parse language snippets instead of com-
plete files (e.g. a Java expression instead of a full Java source
file). The obtained ASTs are called embedded ASTs. They
are inserted in the original ASTs (the host AST) into the po-
sition corresponding to the elements of the original language
hosting the utterances of the embedded language. The re-
sulting AST will contain, possibly, ASTs which are instances
of different language specific metamodels but all the nodes
are valid Codemodels nodes.

3.2.2 Relations spotter
Each node of the AST has a set of properties. Typically,

they are literal values and identifier names. Nodes sharing
a common property value may be related. To determine if

4
https://github.com/ftomassetti/Codemodels

5
http://www.cs.waikato.ac.nz/ml/weka

6See https://github.com/ftomassetti/Codemodels-java and https:

//github.com/ftomassetti/Codemodels-js

it is the case ,the library compares the contexts of those two
nodes. We name the context of a node, its set of surrounding
nodes. It includes both the ancestors (i.e., all the nodes
going from the node itself to the root of the AST) and all
the descendants of the node (i.e., all of its children, and their
children recursively). Then, all node properties that are part
of the context are collected.

From the set of values, we are only interested in those
which appear in both languages: if we are considering a pair
of nodes from Javascript and HTML, we discard the values
which do not appear in both Javascript and HTML nodes
contained in the project. This step reduces the amount of
noise. Once the potential pair candidates are selected, dis-
tance indexes are computed for measuring the similarity con-
texts [5]. All these indexes are sent as inputs to a classifier
which predicts whether or not the relation actually exists.
The prediction is performed using the Random Tree (RT)
classifier.

4. USAGE
In Listing 1, we show how the library can be used from

JRuby7. The example shows the complete process, from
training (lines 1-2), to the calculation of cross-language re-
lations (line 5).

Listing 1: An example of a complete usage
1 oracle_loader = OracleLoader.new
2 classifier = oracle_loader.build_weka_classifier('

oracle -src -dir ','oracle.GS ')
3 spotter = CrossLanguageSpotter :: Spotter.new()
4 project = Project.new('projects -dir ')
5 relations = spotter.classify_relations(project ,

classifier)

4.1 Inputs
The library works with two different kinds of inputs: an

oracle path and a project path. Both oracle and project
paths point to two sets of source files that can be utterances
of all supported languages. The oracle has a file (GS file)
which contains a list of pairs of nodes. During the training
process, the library loads all the source files of the oracle
and finds all node pairs which contain the same identifiers.
If those pairs are listed in the GS file, they are classified as
positive example, while otherwise, they will be classified as
negative examples. For all examples, either positive or neg-
ative, 10 different features are computed [5]. The resulting
data is used to train the Random Tree classifier. The GS
file specifies pairs of nodes by indicating the containing file
of each node, the starting line, column, and the portion of
the source code representing the node.

4.2 Output
The output returned by the classify_relations method

is a list of records. Each record is composed of two iden-
tifier objects plus a Boolean value which indicates whether
the relation exists or not. Each identifier object is a vector
o=(shared id, source file, start line, end line, start column,
end column), where shared id is the surface form (generally
named entity), sourcef ile is the file where the identifier be-
longs to, and the others entries are the offsets of the shared
id in the sourcef ile.
7For an integration in Java code, please refer to https://

github.com/jruby/jruby/wiki/JRubyAndJavaCodeExamples

4.3 Performance
For our in-house testing, the order of magnitude is tens

of seconds (circa 600 lines) to build ASTs from the source
files and to train the classifier. The classification process is,
instead, faster (the order of tens of milliseconds for a small
project).

4.4 Integration
The library output is based on source file positions. This

choice makes possible to easily integrate the library itself
with existing IDEs or other development tools. If the tool
which integrates the library would use a different format of
ASTs, the integrator would need to find out which AST node
corresponds to the given position.

5. OUTLOOK
In this paper, we present a prototype library for detect-

ing automatically cross-language relations. The road-map
includes the automatic detection of programming languages
deploying Markov Chains techniques, the support for more
programming languages (by extending Codemodels), and the
improvement of the feature selections to boost the perfor-
mance of the classifier. Finally, we plan to integrate this
library in an existing IDE such as Sublime Text8 or Light
Table9. For a full IDE integration, we plan to implement
a caching system of the AST of unchanged files to reduce
bootstrap latencies. In the long run, we could use incremen-
tal parsing techniques to improve the performance.

6. REFERENCES
[1] D. Groenewegen and E. Visser. Declarative Access

Control for WebDSL: Combining Language Integration
and Separation of Concerns. In 8th International
Conference on Web Engineering (ICWE’08), 2008.

[2] R.-H. Pfeiffer and A. Wasowski. Texmo: A
multi-language development environment. In 8th

European Conference on Modelling Foundations and
Applications (ECMFA’12), 2012.

[3] R.-H. Pfeiffer and A. Wasowski. Tengi Interfaces for
Tracing between Heterogeneous Components. In
R. Lammel, J. Saraiva, and J. Visser, editors,
Generative and Transformational Techniques in
Software Engineering IV, volume 7680 of Lecture Notes
in Computer Science, pages 431–447. Springer, 2013.

[4] J.-P. Tolvanen and S. Kelly. Integrating models with
domain-specific modeling languages. In 10th Workshop
on Domain-Specific Modeling (DSM’10), 2010.

[5] F. Tomassetti, G. Rizzo, and M. Torchiano. Spotting
Automatically Cross-Language. In IEEE Conference on
Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE’14), 2014.

[6] F. Tomassetti, A. Vetro’, M. Torchiano, M. Voelter,
and B. Kolb. A Model-Based Approach to Language
Integration. In ICSE Workshop on Modeling in
Software Engineering (MISE’13), 2013.

8
http://www.sublimetext.com/

9
http://www.lighttable.com

