
The SentiME System at the SSA Challenge

Efstratios Sygkounas1, Xianglei Li1, Giuseppe Rizzo2, Raphaël Troncy1

1 EURECOM, Sophia Antipolis, France,
{efstratios.sygkounas,raphael.troncy}@eurecom.fr

2 ISMB, Turin, Italy,
giuseppe.rizzo@ismb.it

Abstract. We describe SentiME, an ensemble system composed of 5 state-of-
the-art sentiment classifiers that have proved to perform well on short-texts. Sen-
tiME first trains the different classifiers using the Bootstrap Aggregating Algo-
rithm. The generated models are used by the classifiers separately, while the re-
sults are then aggregated using a linear function averaging the different classifi-
cation distributions. SentiME has been initially tested over the SemEval2015 test
set, properly trained with the SemEval2015 train test. It would outperform the
best ranked system of the challenge. It has also showed robust performance over
the SSA Task 1 training set in a 4 cross-fold experimental setup.

1 Introduction

Nowadays, people frequently purchase goods on the Web. One of the most popular web
site where goods are bought is Amazon. After a purchase, the buyer is generally invited
to publish a review about the product. These reviews are useful for future customers that
seek opinions and sentiments to support them in their decision buying process. The first
task of the ESWC 2016 Fine-Grained Sentiment Analysis challenge3 is about binary
polarity detection of customer Amazon reviews. A participant system should take as
input an XML document containing the textual comment enclosed in the textual tag, and
should generate another XML document that adds, for each sentence, the result of the
classification enclosed in a polarity tag. Precision, recall and F-measure of the detected
polarity values (positive or negative) are the metrics used for evaluating the participant
system on each review of the evaluation dataset. Table 1 reports some statistics about
the dataset provided by the challenge organizers.

In this paper, we describe SentiME, a system that implements an ensemble of five
state-of-the-art sentiment classifiers. In the reminder of the paper, we present the Sen-
tiME system workflow and the experimental settings. We then conclude with some
lessons learned.

2 The SentiME System

SentiME is an ensemble system which is inspired by and built upon the Webis sys-
tem [2]. We extend it using the Boostrap Aggregating Algorithm [1] (referred as bag-

3 https://github.com/diegoref/SSA2016/wiki#
task-1-polarity-detection

2 Sygkounas et al.

Number of Number of Average number Average number
categories sentences of characters per sentence of word per sentence

positive 20 500000 466 86,04
negative 20 500000 513 94,75

Table 1. Some statistics of the SSA Task 1 dataset

ging) for training, and adding a fifth classifier, namely the Stanford Sentiment Sys-
tem [4]. SentiME first trains the 4 classifiers of the Webis system using the Bootstrap
Aggregating Algorithm that is an ensemble meta-algorithm designed to improve the sta-
bility and accuracy of machine learning algorithms used in statistical classification and
regression. It also reduces variance and helps to avoid over-fitting. To perform bagging,
the first step is to generate new training set for each of the 4 classifiers using uniform
sampling with replacement. We then add the results of the Stanford Sentiment System,
used as an off-the-shelf classifier to the model.

The final step of the approach is to aggregate the individual results from each sub-
classifier. When we aggregate the classification results of five sub-classifiers, we use a
linear function which averages their classification distributions and classifies the sen-
tence according to the label that holds the maximum value in the average classification
distribution. Figure 1 summarizes the workflow used in our approach.

Fig. 1. Diagram of the SentiME System workflow.

2.1 Training

The training workflow consists of four steps: i) parse the training set that is released
in XML format; ii) extract all the information needed such as sentence id, textual

The SentiME System at the SSA Challenge 3

content, and polarity; iii) compute the features and create a TSV file and, finally, iv)
launch the bagging process. The output of the bagging will generate different models
that are used as input to train separately each of the four classifiers.

The random selection process generates (1 − 1
e) unique sentences, while the re-

maining ones are duplicated sentences. Figure 2 illustrates how the bagging process is
implemented and how it affects the learning of all sub-classifiers.

Fig. 2. Our Bootstrap Aggregating Implementation.

As shown in Figure 2, we generate a model for each of the four trained sub-classifiers.
The classifier outputs are aggregated via a linear function. Due to the fact that the bag-
ging introduces some randomness into the training process and the size of bootstrap
samples is not fixed, we decide to perform multiple experiments with different size re-
peated multiple times for each size. From the experimental results, we have observed
a convergence of the performance and thus, we can conservatively claim that a ran-
dom generation is representative enough to carry out this task. A comprehensive list of
features used by the sub-classifiers is shown in Table 2.

We used a variety of polarity dictionaries since we have observed numerous emoti-
cons such as :) and :-(in the XML files of the training set. We use emoticons dictio-
naries to categorize a sentence according to the presence of an emoticon. An additional
point worth mentioning is that punctuation marks are also a common way to express a
sentiment. Consequently, we consider punctuation marks dictionaries. Finally, we also
make use of POS tags either provided by the Stanford POS tagger, which is for formal
language, or by the CMU ARK POS tagger, which is used for more informal language.

The fifth sub-classifier of our approach, namely the Stanford Sentiment System,
is used as an off-the-shelf tool. Consequently, it is not specifically trained using the
Amazon reviews dataset but instead, makes use of the model developed in [4].

4 Sygkounas et al.

Approach Machine learning Features
NRC-Canada Support Vector Ma-

chine
n-grams, alcaps, POS, polarity dictionaries, punctuation
marks, emoticons, word lengthening, clusters of words
and negation

GU-MLT-LT Linear Regression normalized uni-grams, stems, clusters of words, and
negation

KLUE Maximum Entropy unigrams, bigrams, and an extended unigram model of
negations

TeamX Logistic Regression word n-grams, character n-grams, clusters of words, and
word senses

Stanford Sen-
timent System

Recursive Neural
Networks

-

Table 2. Machine learning algorithms and features being used by each sub-classifier

2.2 Testing

The testing process of our system contains the following steps. First, we load all the pa-
rameters into the feature extractor and the classifier. Then, we pre-process the sentences
as what we do in the training process. In a next step, we extract the feature vectors from
the cleansed sentence texts and pass them to the classifier. The classifier will give the
classification result which will be used to generate the final classification. When we
evaluate our ensemble system, we use the linear function that averages the classifica-
tion distributions provided by the five sub-classifiers and produce the final classification
according to the maximum value of the labels in the average classification distribution.

Concerning the Stanford Sentiment System, the main challenge in using a corpus
not labeled at tree level is that the sentences often contains misspelling, poor grammati-
cal structure, emoticons, acronyms, and slang which is quite out of the range of Stanford
Sentiment System because it cannot robustly compute the tree structure. To reduce par-
tially this difficulty, we perform a pre-processing of the sentences where we filter out all
URLs, trim the sentences and lowercase all the capitalized characters. We give the out-
put to the Stanford Tree Parser which is a machine-learning model that parses the input
text into Stanford Tree format and this output is given to Stanford Sentiment Classifier
which outputs the classification results for Stanford Trees. Stanford Sentiment Classifier
provides us with a rich result format: classification label and classification distribution
on all the nodes in the Stanford Tree. We only extract the root classification distribution
because it represents the classification distribution of the entire sentence text. Finally,
it produces the classification result which has been mapped in two labels (positive and
negative).

3 Preliminary Results and Lessons Learned

Table 3 reports the F-measure performance of the 4-fold experiment we conducted on
the training dataset. Due to scalability issue, we have further down sampled each fold
using 100K reviews as training and 10K reviews as test.

The SentiME System at the SSA Challenge 5

Fold 1 Fold 2 Fold 3 Fold 4
0.9042 0.9065 0.9095 0.9113

Table 3. Classification results in a 4-fold cross validation experiment setup

The ensemble approach shows consistent results in the experimental setup and it
results to be agnostic to textual variations as it is the case in the sentences collected
from twenty different categories. The key-strength of the approach relies on the bag-
ging process allowing stable results preserving the model to overfit. Being a data-driven
approach, the variation of the training set makes the approach ready to process different
text-genres such as microposts and reviews. Finally, the addition of the Stanford Senti-
ment System in our ensemble improves the performance on sarcasm sentences, that are
quite common when conveying sentiments. This happens because the native Stanford
Sentiment System has a great strength to classify sentences whose golden standard is
negative as it has been tested in our previous experiments over the SemEval2015 test
set [3, 5]. This means that we can use Stanford Sentiment System to help our system to
classify the sarcasm sentences. On the other hand, Stanford Sentiment System is heav-
ily skew towards negative. We address this problem in using the Bootstrap Aggregation
Algorithm (bagging) with the size of 150% of the original training set.

Acknowledgments

The authors would like to thank Xianglei Li for his earlier work on the SentiME system.
This work was partially supported by the innovation activity 3cixty (14523) of EIT
Digital and by the European Union’s H2020 Framework Programme via the FREME
Project (644771).

References

1. Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123–140 (1996)
2. Hagen, M., Potthast, M., Büchner, M., Stein, B.: Webis: An Ensemble for Twitter Sentiment

Detection. In: International Workshop on Semantic Evaluation (SemEval) (2015)
3. Rosenthal, S., Nakov, P., Kiritchenko, S., Mohammad, S., Ritter, A., Stoyanovm, V.: SemEval-

2015 Task 10: Sentiment Analysis in Twitter. In: International Workshop on Semantic Evalu-
ation (SemEval) (2015)

4. Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C., Ng, A., Potts, C.: Recursive Deep
Models for Semantic Compositionality Over a Sentiment Treebank. In: Conference on Em-
pirical Methods in Natural Language Processing (EMNLP) (2013)

5. Sygkounas, E., Rizzo, G., Troncy, R.: A Replication Study of the Top Performing Systems
in SemEval Twitter Sentiment Analysis. In: 15th International Semantic Web Conference
(ISWC) (2016)

