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Abstract

Location-based social networks (LBSN) are capturing large amount of data
related to whereabouts of their users. This has become a social phenomenon,
that is changing the normal communication means and it opens new research
perspectives on how to compute descriptive models out of this collection of
geo-spatial data. In this paper, we propose a methodology for clustering
location-based information in order to provide first glance summaries of ge-
ographic areas. The summaries are a composition of fingerprints, each being
a cluster, generated by a new subspace clustering algorithm, named Geo-
SubClu, that is proposed in this paper. The algorithm is parameter-less:
it automatically recognizes areas with homogeneous density of similar points
of interest and provides clusters with a rich characterization in terms of the
representative categories. We measure the validity of the generated clusters
using both a qualitative and a quantitative evaluation. In the former, we
benchmark the results of our methodology over an existing gold standard,
and we compare the achieved results against two baselines. We then fur-
ther validate the generated clusters using a quantitative analysis, over the
same gold standard and a new geographic extent, using statistical validation
measures. Results of the qualitative and quantitative experiments show the
robustness of our approach in creating geographic clusters which are signifi-
cant both for humans (holding a F-measure of 88.98% over the gold standard)
and from a statistical point of view.
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1. Introduction

When planning a visit to a new city or when exploring a new area, trav-
elers usually look for landmarks, sightseeing places, nightlife districts and
pleasant restaurants, while avoiding areas which are known for a high crime
rate when searching for an accommodation. Such an understanding of social,
cultural, political, and economic aspects of an area goes beyond the phys-
ical structure of a city as defined by blocks and districts, that are usually
represented in thematic maps. City thematic maps are largely used by trav-
elers and widely sponsored by travel agencies so far, but they generally offer
static views of city parts delimited by too rigid boundaries. In addition, the
accuracy of these thematic maps is proportional to their freshness: the more
recently published, the better, but, for the dynamic aspects of a city, this
requires regular updates, thus making the thematic map quickly outdated.
This results in a mismatch between city thematic maps and the living city
topologies.

The human generation of living city topologies follows a workflow in which
one or more domain experts are involved. The forces that shape the dynamics
of a city are manifold and thus complex to be tracked, making the expert task
extremely difficult and error prone [1]. Generally, such a process requires:
i) a comprehensive knowledge of the city life character for shaping the right
textures while considering numerous city aspects such as social, cultural and
economic; ii) a significant set of observations of those city aspects.

With the advent of the Open Data movement, many public actors such as
municipalities, districts, and governments, have started to release data sets
that report public information such as employment rate, and GDP per capita.
This opens new perspectives for generating in an automatic fashion thematic
maps: given the distribution of a feature (e.g. GDP) and the shape of a
territory (e.g. a district or an entire country), it is possible to automatically
aggregate data using intelligent algorithms and to infer the distribution of
the feature values in the geographic area in a shape that can be later used by
experts and thus travelers. In parallel, the massive involvement of citizens in
social media services is constantly generating new sources of location-based
data. This data encompasses people’s actions, dynamics of cities, so that it
instantaneously reports any changes in the city topology [2]. Such amount of
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data can, therefore, be considered as a crucial source for geo-spatial platforms
if taken globally. A disruptive characteristic of this data is given by the fact
that it is freely and collaboratively created by users and it often reports fine-
grained descriptions of points of interests. Users act as crowd sensors by
sharing their whereabouts and further enriching the available information of
the territory with annotations such as place categories, tips, and comments.

Leveraging this massive amount of user whereabouts data, the objective
of this paper is to define a methodology that automatically adds a layer over
the typical cartography geographic maps, creating summaries on what crowd
sensors tell about venues and, generally speaking, points of interest. Applying
a geographic data-driven approach, our work grounds on using unsupervised
descriptive models that take as input crowd sensor annotations and aggre-
gate them to highlight geographic patterns, that we refer as summaries. For
any map, the mining models are composed of first glance high-level patterns
(clusters of geographic annotations) that we name fingerprints. A finger-
print generates a thematic map prototype that summarizes a large amount
of spatial annotations. Such a summary is beneficial for the end-user since it
allows to better focus the attention on areas in which certain types of anno-
tations are prominent while discarding many details that represent isolated
annotations which may distract the user attention.

In extracting these thematic map prototypes, we are able to automatically
infer the pattern evaluation parameters that allow the mining algorithms to
work effectively on each annotation feature and discard the noise. Finally, we
are able to combine the single dimension thematic map prototypes into more
complete summaries solving the high-dimensional problem of combining the
annotations of different categories in the same spatial area. Our approach
works with any location-based data as input. In our experimental settings,
we use the Foursquare1 application since it provides a broad coverage both
in terms of users and venues. We focus on the top 10 venue categories2 (first
level of the hierarchy), and we use them to build the feature vector of the
proposed descriptive model. The model takes into account both the spatial
proximity between venues as given by their geographic coordinates, as well
as the semantic feature proximity that is derived from the distribution of
venue types created by the crowd sensors. We experiment using the research

1http://foursquare.com
2https://developer.foursquare.com/categorytree

3

http://foursquare.com
https://developer.foursquare.com/categorytree


prototype developed by [3], refining the descriptive model, the logic for the
parameter selections as described in this work, and providing a thorough
experimental setup.

Figure 1 shows the output of our approach for a geographic area covering
the Milan municipality. The colors indicate different semantic types assigned
to the clusters.

Figure 1: The output of the approach presented in this paper for an extent of the Milan
municipality. Each shape defines a cluster while the color indicates the semantic fea-
ture assigned to the entire cluster. The color mapping is as follows: green=“College &
University”, blue=“Nightlife Spot”, orange=“Arts & Entertainment”, red=“Outdoors &
Recreation”. The semantic features are named according to the classes of the Foursquare
taxonomy.

The reminder of the paper is organized as follows. In Section 2, we formal-
ize the preprocessing stage meant to sample the input data and to generate
the data structure used by the algorithm. Section 3 presents our proposed
algorithm, while in Section 4, we report the statistically sound mechanism
for the automatic parameter selections. We compare the output of our al-
gorithm with a human manually created gold standard in Section 5, and we
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further validate the generated clusters over two corpora using two statistical
validation tests in Section 6. We then describe prior works (Section 7) and
we conclude outlining future research directions in Section 8.

2. Grid Sampling and Feature Set

The input data of the summarization process is a set P of geographic
points p, each characterized by a semantic feature that is usually listed in
a taxonomy or controlled vocabulary associated with the dataset (e.g. the
Foursquare taxonomy).3 We represent the point p by the tuple (lat, long, f),
where the variables respectively represent the latitude, longitude and seman-
tic feature, such as the category label used for classifying the venue according
to a taxonomy.

We map P to a square-shaped spatial area named bounding box (BBox).
Then, we split it into geographic sub-areas (also called cells) of uniform sur-
face forming a regular grid. The number of cells depends on the dimension of
the BBox. In order to have a statistical significance of the sampled set, the
number of cells is greater than 100. Each cell of the grid is then described
by the frequency of the categories that occur in the cell and is geographically
represented by its focal point (or centroid). This aggregation of the observa-
tions occurring in each cell results in generating a set O of geographic objects
o, each composed of:

lat: the latitude of the focal point of o;

long: the longitude of the focal point of o;

vector[df1 ..dfn ]: a feature density vector that stores for each semantic fea-
ture fi (such as category value of a point of interest) its observed an-
notation frequency divided by the surface area of the cell. Features in
vector are alphabetically sorted.

Each feature represents the cell and its spatial area. We then apply an
intra-feature normalization to O. For each feature, we consider the vector Vi
of the values vij, where vij is the i-th component of vector for all the objects
oj ∈ O and we normalize each value as:

zij =
vij −min(Vi)

max(Vi)−min(Vi)
, (1)

3https://developer.foursquare.com/categorytree
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where min and max represent respectively the minimum and the maximum
value of the vector Vi, zi represents the normalized value of the feature fi
for all objects oj, and Zi is the vector of the normalized values zij. This
normalization makes the feature distributions comparable. For example, let’s
consider the number of hospitals in a city. In number, they are normally
fewer that the number of metro stations. Applying such an intra-feature
normalization, it preserves the native distribution of the categories in space
and it allows to independently compare their values from their ranges.

The resulting normalized feature set, On, is therefore composed of nor-
malized objects, where each object has a feature vector of values in [0, 1]. On

represents the input set of the descriptive logic model.

3. Finding the Annotation Clusters in a High-dimensional Space
with GeoSubClu

GeoSubClu is the clustering algorithm we propose in this paper. It
is inspired by SubClu [4], a subspace clustering algorithm based on DB-
SCAN [5]. The goal of our algorithm is to identify subspaces of the feature
space in which spatial contiguous clusters exist. Each cluster is then a set of
contiguous cells (a region of the space) characterized by a similar distribu-
tion in a subset of venue categories. As an additional side-effect, clusters are
potentially overlapping, among different subspaces.

Algorithm 1 lists the procedural stages, while Figure 2 provides a graph-
ical representation of the algorithm. It takes as inputs: i) the set O =
{o1, . . . , om} of geographic objects located at the spatial coordinates fx and
fy and described by F = {f1, . . . , fn}, ii) ε, and iii) minpts both used for
defining the size of the clusters. The algorithm returns a collection {Sk} of
k-dimensional subspaces sk (k = 3, . . . , (n+ 2)) in which at least one cluster
set ck exists. For each subspace sk the relative collection of cluster sets Csk
is returned.

In the following, s denotes a subspace (composed by the spatial coordi-
nates and by at least one feature from the set of features F), Cs denotes
the set of clusters related to the subspace s, Sk denotes the set of all k-
dimensional subspaces sk containing at least one cluster, and Ck is the set of
the cluster sets Csk in k-dimensional subspaces sk.

GeoSubClu can be divided into two main steps: i) the generation of
the initial 3-dimensional subspaces together with the related set of clusters
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Algorithm 1 GeoSubClu(O, ε,minpts)
1: S3 = ∅, C3 = ∅
2: for all fi ∈ F do
3: scand={fx, fy , fi}
4: minpts=computeParameter(scand)
5: Cfi = DBSCAN(O, scand, ε,minpts)
6: if Cfi 6= ∅ then
7: S3 = S3 ∪ scand, C3 = C3 ∪ Cfi

8: end if
9: end for
10: k = 3
11: while Ck 6= ∅ do
12: generate the set of candidates Scand

k+1 from Sk
13: for all scand ∈ Scand

k+1 do

14: pick a subspace sk ∈ Sk s.t. sk ⊂ scand

15: minpts=computeParameter(scand)
16: Ccand = ∅
17: for all cluster c ∈ Csk do
18: Cscand

= Cscand ∪DBSCAN(c, scand, ε,minpts)

19: if Cscand 6= ∅ then
20: Sk+1 = Sk+1 ∪ scand, Ck+1 = Ck+1 ∪ Cscand

21: end if
22: end for
23: end for
24: k = k + 1
25: end while

(lines 1–9); ii) the generation of all (k)-dimensional subspaces (with k > 3)
and of the related set of clusters (lines 10–25).

First Step. The algorithm initializes the set of 3-dimensional subspaces
S3 and the related set of clusters C3 (line 1) with the empty set. Then, it
computes a set of density based clusters for each 3-dimensional subspace con-
sisting of the two spatial features (fx and fy) and only one category feature fi
(lines 2–9). Next, DBSCAN [5] performs a density based clustering opera-
tion, having ε and minpts as density parameters, and the Euclidean distance
to measure the distance among the points. The driving DBSCAN density
parameters are automatically computed by our method as it is explained in
Section 4. Line 4, the density parameter minpts is computed in the current
candidate subspace, scand. For each tested subspace scand = {fx, fy, fi}, if at
least one cluster is identified, the algorithm adds the found subspace to S3
and the resulting set of clusters Cfi to C3.

Second Step. The algorithm iteratively generates the (k+1)-dimensional
subspaces sk+1 (and the related clusters) combining two from the k-dimensional
subspaces, iff one cluster exists from the initial k-dimensional spaces. This
procedure is similar to the candidate generation approach of Apriori, from
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Figure 2: Workflow of GeoSubClu when performing a clustering operation of a dataset
composed of geographic points having 2 different semantic features. The process consists of
two steps: i) cluster creation over the points in the subspace of a single semantic feature,
ii) exploration of the result set to find areas which have a density of points from two
semantic features higher than a computed threshold.

the frequent itemset mining algorithm theory [6]. The procedure ensures that
each subspace is generated only once and that irrelevant subspaces are pruned
(a (k+1)-dimensional subspace is irrelevant is any of its k-dimensional subsets
does not contain any cluster). Successively, for each candidate scand ∈ Scandk+1 ,
the algorithm picks up a single k-dimensional subspace sk that is a subset of
scand (line 14) and computes the new density based clusters in the data de-
fined by each cluster c ∈ Csk and the candidate subspace scand (lines 15–22).
If at least one cluster is found, the candidate subspace scand is added to the
set of (k + 1)-dimensional subspaces Sk+1, and the resulting set of clusters
Cscand

is added to Ck+1 (line 20). Lines 12–24 are repetitively executed as
long as the set of k-dimensional subspaces and the related cluster sets are
not empty.
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4. Parameter Selections

The parameters minpts and ε define the conditions for a cluster to be
valid in the feature space. The minimum number of points minpts defines
the minimum cardinality of a set to be eligible as cluster, and it is computed
considering the density of points in each cell for each feature. The distance
ε defines the maximum distance between two points that allows the second
point to be added to the cluster containing the first point. In our approach,
it is computed only considering the spatial dimensions. Figure 3 shows the
contribution of minpts and ε in shaping a cluster.

Both parameters are automatically assessed depending on the feature set
given as input, following a statistical approach.

Figure 3: Points are plotted in 3-dimensional space. Red circles show the reachable points
given ε. Points in red are called core points. B,C are the frontier points. The set of points
which are ε reachable (with cardinality equal or greater to minpts) generates a cluster for
the category ci.

4.1. Determination of minpts

Given as input a multi-dimensional feature set, we compute different
minpts values depending on the feature(s) considered. The rationale be-
hind is that each set of features (the set ranges from 1..n features) follows its

9



own distribution. In the following, we first describe the statistical method-
ology for computing the minpts value for points with a single category, and
then, we describe the computation to assess the value for the combination of
categories.

Single category. By the law of large numbers, from independent random
samples, it is possible to infer with a bound high probability (usually from
95% to 99%) the value range of a statistical parameter, taken as a random
variable. The range is inferred from a distribution that is normal (or is
approximated using a t-Student distribution, if the sample cardinality is large
- of the hundreds) and this inference is possible even if the true distribution of
the values does not fit the Gaussian law [7]. The random variable represents
the density value of a certain feature fi in a cell. Its distribution in the grid
cells is derived observing the density value of the feature in the N sample
cells (in the cell j, its value is denoted by fij). Then, we compute the
mean statistics of the observed values fij given by the maximum likelihood
estimator:

µi =
ΣN
j=1dij

N
, (2)

and the standard deviation:

σi =

√
ΣN
j=1(dij − µi)2

N
. (3)

We can formulate the range of values I as:

I = (µi − z ·
σi√
N
,µi + z · σi√

N
) (4)

where z = 1.96 determines the critical value at the 5% of the confidence
level. Given this range of values and a random sample cell, we have a chance
less than or equal to the confidence level of 5% to erroneously infer that the
density value in the sample is within the range. From the given range, we
can estimate the value of the parameter minpts. If we consider:

minpts = µi − z ·
σi√
N

(5)

we have a probability equal to the half of the confidence level (2.5% because it
is a one tail distribution) that some category observations will be present with
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a density value below this minimum bound and these will be just the outliers
belonging to the left tail of the distribution that we want to exclude from the
clusters. As a consequence of this theory, the function computeParameter at
line 4 (Algorithm 1) sets the minpts parameter, which drives the clustering
algorithm with a sound statistical mechanism that is able to compute the
observation densities that will be left outside of the clusters.

Multi category. The same function called at line 15 (Algorithm 1)
computes the minpts parameter in a subspace whose dimension number is
higher than 3. These subspaces include the two spatial features fx and fy and
more than one semantic features. Let’s denote these additional features with
fi and fk. We treat their density as independent random variables. Under
this hypothesis, a new mean value µik (which is the expected value of the
joint density of the categories) is computed by the product of the respective
expected values:

µik = µi · µk (6)

and a new standard deviation is computed as:

σik =

√
Σj=1..N(dijdkj − µiµk)2

N
, (7)

where dij and dkj are the observed densities respectively of the features fi
and fk, in the j-th cell of the N total cells. With the new mean value and the
new standard deviation, the same theory as above is applied and the lower
bound of the range of values is computed according to:

I = (µik − z ·
σik√
N
,µik + z · σik√

N
), (8)

we then consider:
minpts = µik − z ·

σik√
N
. (9)

4.2. Determination of ε

We use the reachable distance, ε, to exploit the geographic proximity
between objects, avoiding that the objects are in isolation (which means
GeoSubClu is not even able to find one group in the space). To estimate the
reachable distance, we only consider fx, fy, i.e. the latitude and longitude of
the object. Using the normalized grid representation, our geographic objects
are uniformly distributed in the BBox at a fixed geographic distance. Given
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an object oi, the farthest distance to reach an object oj in the first-level
surroundings, with i 6= j, is equal to the diagonal ε of a square:

ε = L ·
√

2 (10)

where L is the edge of the square S that encloses the surrounding objects. A
priori, we know that the total number of objects in the BBox is N , and the
BBox has a unitary surface (each edge is 1) due to the normalization. This
implies that L is 1√

N
. Therefore, we define:

ε =

√
2√
N

(11)

5. Qualitative Evaluation

To measure the performance of the proposed approach, we benchmark
GeoSubClu against a humanly created gold standard and we compare the
results of GeoSubClu with two baselines. To ensure a fair comparison,
and a better match with the existing gold standard, we only analyze the
performance of GeoSubClu in generating clusters from a single feature ci
(Algorithm 1, Step 1). We frame the evaluation to ensure the best settings
for two baselines, to underline the robustness of our methodology.

5.1. Gold Standard

We use the Del Bimbo et al. [8] corpus, which is a manual annotated cor-
pus of a geographic area covering around 93 Km2 of Florence. The area has
been divided in 15 numbered cells, where each cell has been annotated with
0 up to 3 different categories of the Foursquare taxonomy (top categories,
except Event) by the 28 participants of the survey.

5.2. Dataset

We sample an area which is 10 times bigger than the BBox being analyzed
in the Gold Standard using the Foursquare API4 and we build a dataset of
Points of Interest (POIs).5 This enables to assess with a statistical meaning
the parameters of GeoSubClu (Section 4). We make sure to avoid missing

4http://developer.foursquare.com
5Coordinates: 43.823766577, 11.298408508, 43.733295127, 11.183395387.
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POIs when querying the Foursquare API which limits the number of venues
that can be collected for a given area.6 In total, we collected 12,167 different
POIs.7 This dataset covering the extent of the Florence city is publicly
available8 for non-commercial use only according to the Foursquare legal
terms.9

5.3. Baselines

We compare the performance of the proposed approach with two base-
lines: K-means and DBSCAN. We use the already existing implementations
of two algorithms, respectively K-means [9] and DBSCAN [10].

5.3.1. K-means

The experimental setup consists in performing a clustering process over
the normalized geographic features, fx and fy, of the POIs. To measure the
distance between points, we use the Euclidean distance. We set K equal to
the number of clusters extracted by our approach (K=135). In this way, we
ensure a fair comparison with the approach proposed in this paper. For each
resulting cluster, we compute the centroid, represented as a feature vector of
< fx, fy, fi, ..., fn >, where fi represents the normalized frequency of POIs of
the semantic feature fi in the cluster. The cluster is then labeled with the
semantic feature fi, where i = index(max{fi, ..., fn}).

5.3.2. DBSCAN

The experimental setup consists in performing a clustering process over
sets of POIs, grouped according to the semantic feature fi. We then use
the Manhattan distance function for measuring the geographic distance in
meters between two points represented by two pairs (fx, fy). We then set ε
equal to the average distance (in meters) of the points in the whole dataset
(ε = 200). We also use different minpts values depending on the group
(featured by the category) of POIs. These values are computed following the
procedure reported in Section 4.1. Therefore, we let DBSCAN perform in
the best conditions, solving the problem of defining the density parameter
values.

6https://developer.foursquare.com/overview/ratelimits
7Number of POIs collected as of July, 28th 2014
8http://github.com/giusepperizzo/geosummly/tree/master/datasets/

florence
9http://foursquare.com/legal/terms
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5.4. Results and Discussion

We analyze the results of the three approaches only for the BBox reported
in the Gold Standard. We consider a tp (true positive) value if the cluster
geographically overlaps a cell in the Gold Standard, and both have in common
the label of the semantic feature fi. We consider a fp (false positive) if it
exists a geographic overlap between a cluster and a cell in the Gold Standard,
and if the cluster has been labeled with fi which is not used to label the cell
in the Gold Standard. With fn (false negative), we consider the overlap from
a cluster and a cell in the Gold Standard, but the cluster has not been labeled
with the ci used in the Gold Standard. We consider a valid overlap if at least
one POI is intersected.

Results are analyzed in terms of precision, recall, and F-measure with
β = 1. We define:

precision =
tp

tp + fp
, (12)

recall =
tp

tp + fn
, (13)

F1 = 2 · precision · recall
precision+ recall

. (14)

Results are shown in Table 1. We observe that GeoSubClu outperforms
the two baselines in recall and F1. Only K-means holds a higher precision,
despite the low recall and F1 values. This is due to the fact that K-means
segments the space in clusters which are not overlapped. Differently, given
the experimental settings being used, DBSCAN and GeoSubClu generate
overlaps, increasing therefore the recall, but holding a similar and high level
of precision.

Table 1: Clustering performance over the Florence Gold Standard. Figures are in percent-
age.

precision recall F1
K-means 90.91 43.48 58.82
DBSCAN 87.18 88.67 87.93
GeoSubClu 86.78 91.30 88.98
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6. Quantitative Evaluation

We also propose an alternative evaluation strategy to the human-based
validation, based on assessing the statistical evidence. The main motivation
that has led to this evaluation is because the degrees of freedom in human
evaluation applied to this domain are numerous to be effectively handled by
human beings, since for a human, it is required to have knowledge on both
visible and invisible aspects of the territory [1], making the human evaluation
extremely subjective, costly, and hard to achieve in practice. Consequently,
we propose two statistical tests grounded on the Sum of Squared Errors (SSE)
and Jaccard.

6.1. Sum of Squared Errors

We adopt the SSE metric to measure the distance which occurs from the
clusters created by GeoSubClu using as input the case study dataset, and
the SSE distribution of the GeoSubClu outputs using as inputs a set of
randomly created datasets [11].

Let’s consider the object cardinality mi of a cluster C, x and y two ob-
jects so that dist(x, y) is the Euclidean distance between them. Equation 15
formally defines the SSE per cluster.

SSE =
1

2mi

∑
x,y∈Ci

dist(x, y)2, (15)

SSE measures the proximity each point has with respect to their neighbors
that belong to the same cluster. The lowest is the SSE, the more cohesive is
the cluster. Equation 16 reports the SSE per dataset.

SSET =
∑
i

SSEi. (16)

The goal is to compare the SSETorigin , generated from the obtained clus-
ters on the use case dataset, with the statistical observation of the SSETrandom

,
computed from the randomly generated datasets. Our goal is to show how
good are the clusters computed from the origin set in comparison with the
clusters obtained from the random datasets, assessing that the first ones
cannot occur by chance as it happens with random data. The experiment
consists in generating 500 random sets, where each feature vector has the
same range of the original set. We apply GeoSubClu, and we accumulate
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the distribution of the SSET values for the clusters found. By using this
distribution of SSETrandom

values, we measure the probability density func-
tion (PDF) of this distribution evaluated at the specified point SSETorigin .
According to [11], we consider the test successful if the PDF value is lower
than 3%.

6.2. Jaccard

We perform a statistical test based on the Jaccard distance. The test
consists in splitting the origin set in two parts (holdout), where each has
been randomly sampled from the origin. We then run the GeoSubClu
algorithm on both sets, A and B, and we measure the overlaps between the
cluster surfaces that have the same label Cx, Cy as shown in Equation 17.

JaccardS(Cx, Cy) =
|Cx ∩ Cy|
|Cx ∪ Cy|

, (17)

To achieve an unbiased estimate of the holdout model, we apply a 10-fold
cross-validation. We follow a worst case evaluation, given that we consider an
overlap only when two cells have a 100% surface overlap, discarding therefore
partial cell overlaps. We consider the test successful if JaccardS > 70%.

6.3. Datasets

We apply those two tests on two different datasets, namely Florence and
Milan. For the former, we used the one described in Section 5, while the latter
has been released for the 2014 BigData Challenge.10 The Milan dataset11

consists of 10K cells, each of d=200m, where d is the edge of a squared cell.
The venues have again been collected from the Foursquare API, ensuring
that the sampling process successfully considered all POIs available for this
area, ultimately collecting 57,136 distinct venues.12

6.4. Results and Discussion

Fig. 4 shows the histograms of the SSETrandom
distributions from the

500 random sets over the two geographic extents. In Table 2, we report
the SSETorigin and the PDF computed at the value SSETorigin on both SSE
random distributions.

10http://www.telecomitalia.com/tit/en/bigdatachallenge.html
11Coordinates: 45.5677, 9.0114, 45.3566, 9.3126.
12Number of POIs collected on 30th June 2014.
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Figure 4: Histogram of the SSE distribution on the 500 random datasets (a) Milan and
(b) Florence.

(a) Milan extent

(b) Florence extent

Given that the two PDFs are lower than the threshold, we can conserva-
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Table 2: SSETorigin values and the PDF (SSETorigin) computed respectively using the
SSETrandom

distributions of Milan and Florence.

SSETorigin PDF (SSETorigin)

Milan 0.0084 6.4965e−301

Florence 0.5525 1.361e−4

tively claim that the test is successfully passed. However, we observe a drop
in the performance for the Florence experiment. This is mainly due to the
lower number of POIs that stress the test case.

Table 3 reports the breakdown per-cluster JaccardS measures for both
city extents and the overall average. Similar to the SSE test, we observe that
the JaccardSFlorence

has a drop in performance, due to a reduced set of POIs,
resulting in a low density of venues in the use case datasets especially for some
categories such as Food and Travel & Transport. This affects the average
value, which consequently means in average that the test is unsuccessful for
GeoSubClu.

Table 3: Categories breakdown JaccardS measures on the two corpus. Values are in
percentage.

Cluster Name JaccardSMilan
JaccardSFlorence

Arts & Entertainment 100 63.56
College & University 100 65.79
Event 100 95.5
Food 71.44 41.55
Nightlife Spot 100 80.01
Outdoors & Recreation 100 71.43
Professional & Other Places 95.44 71.09
Residence 75.32 77.69
Shop & Service 83.84 74.99
Travel & Transport 99.99 39.74

average 92.60 68.14

7. Related Work

Data summarization is a well-known and prolific topic in Text Mining [12]
and in Data Mining in general [13]. Summarization algorithms aim to iden-
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tify the most important sentences in a given textual input, which can either
be a single document or a set of related documents, and to tie them together
to create a summary. While research efforts have produced mature tech-
nologies for producing summaries of textual data, the automatic extraction
of summaries from geographic data and geo-tagged social activity is still at
early stages. Nevertheless, the extraction of patterns from geo-localized data
sampled from crowd sensors has gained a lot of attention. We can summarize
the recent research attempts as aiming to enable: i) user activity discovery
and ii) thematic map discovery.

User Activity Discovery. Location-based social networks record daily
personal footprints. We define a footprint as an atomic interaction with a
knowledge base that generates (textual or visual) metadata about a venue.
Active footprints (when a user generates multimedia resources and geo-
localize them) and passive ones (when a user just interacts with the in-
frastructure) create possibility on shaping the topology of a city by simply
observing the spatio-temporal reference and the footprint frequencies [14].
Numerous footprints, taken globally, can be combined and used as input
to generate descriptive models such as K-Means as proposed by Noulas et
al. [15]. This model covers 8 top classes of the Foursquare taxonomy (Arts &

Entertainment, College & Education, Shop & Service, Food, Outdoors

& Recreation, Travel & Transport, Nightlife Spot, Residence/Professional

& Other Places). They proposed an experiment based on a data set of 12
million Foursquare check-ins, collected via Twitter posts. Their intent is
to profile Foursquare users and to detect groups of individuals with similar
activity patterns. We take inspiration from this work to segment the space
in equal size cells, all belonging to the main bounding box. Differently, we
consider the density of each category in the space rather than the popular-
ity of the venues. Ferrari et al. [16] addressed the problem of extracting
urban patterns from fragments of multiple and sparse people life footprints,
as they emerge from their participation to social media services, to discover
what are the most crowded areas in a city. Using a Latent Dirichlet Al-
location (LDA) clustering algorithm, they experiment on a large data set
of Foursquare venues in New York collected from 13 million tweets. Cran-
shaw et al. [1] proposed another descriptive model approach for generating
social centric summaries of spatial areas. Albeit this work has several points
in common with ours, the first main difference is on the purpose. Cranshaw et
al.’s work focuses on grouping places according to their social dynamics. This
means that, given an area A, and a live social interaction S, they propose an
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approach that creates summaries as function f(A, S). It results in covering
live dynamics of the city, but in leaving out the scope the venues that exist
and that still characterize the territory. Hence, the summary depicts only
partially the reality. In contrast, our approach focuses more on the latter as-
pect. Formally, given an area A, and a territory exploration T collected from
user endeavors, we provide summaries as f(A, T ). Cranshaw et al. use a
spectral clustering approach that tends to follow the dynamics of the people
interaction, while in our approach, exploiting the density category distribu-
tions, we empower a density-based clustering. These differences make both
approaches not comparable in terms of the output results.

Rakesh et al. [17] proposed a framework to identify and summarize tweets
that are specific to a location. They proposed a weighting scheme that uses
mutual information score of tweet bi-grams, the tweet inverse document fre-
quency, the term frequency in tweets, and the user’s network score with the
purpose to recognize the location-specific tweets. Then, a LDA model is
trained to detect topics from a ranked set of location-specific tweets. This
work shows that the users’ network information plays an important role in
determining the specific location characteristics of the tweets. Similarly,
Chua et al. [18] proposed a search and summarization framework to extract
relevant representative tweets from an unfiltered tweet stream in order to
generate a coherent and concise summary of an event. They introduce two
topic models which exploit temporal correlations in data to extract relevant
tweets for summarization.

Lee et al. (in [19], [20]) analyzed urban characteristics in terms of crowd
behavior by using crowd lifelogs in urban area over Twitter exploiting geo-
tagged micro lifelogs. Specifically, they computed a crowd behavior fea-
ture focusing on temporal changes of the periodic occurrence of geo-tagged
tweets for a geographic region. Crowd behavior is modeled on timestamp,
location information, and user ID, without analyzing textual messages. A
Expectation-Maximization clustering approach is executed on a filtered set
of tweets locations, and the Voronoi diagrams are used to identify subregions
of the urban area. Each cluster is then characterized by temporal changes
of the periodic occurrences of geo-tagged tweets. Differently from our work,
location semantics is only used to validate the behavioral summary.

Thematic Map Discovery. The spatial characterization is a descrip-
tion of spatial and non-spatial properties that are typical of venues. In par-
ticular, a spatial characterization task aims at discovering the properties
of geographic targets as <attribute, value> pairs. Discriminant proper-
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ties occur in target venues and in their neighborhoods when their frequency
is significantly different from the observed frequency in a knowledge base.
Tomko et al. [21] proposed a method to calculate the descriptive prominence
of venue categories that are sampled from OpenStreetMap13, for a given re-
gion. They selected the most prominent categories for the inclusion in the
region characteristic description. The descriptive prominence of a venue is
computed using the concept of contrast from background. In particular, they
used the occurrence frequency of a category in a given region and in the sur-
roundings to evaluate if a category is over- or under-represented. In their
work, they assessed the descriptive prominence of a category of venues using
the combinations of over- and under-represented concepts in three nested dis-
tricts. Similarly to this work, Meo et al. [22] proposed a statistical approach
to estimate the spatial characterization of an area considering its surround-
ings, without imposing a priori knowledge on the geographic area charac-
terization. An area is then marked depending on the statistical distribution
of the observed features. As data source, they use both OpenStreetMap
and GeoNames14. The work proposed in this paper grounds on the findings
exploited by Meo et al. [22], approaching the problem of marking an area
depending on the observed venue categories collected from endeavours. In
other words, we consider as prominent features all the annotation categories
and use their frequency distributions also in combination. Recently, Appice
and Malerba [23] proposed a time-evolving clustering model in order to sum-
marize geophysical data, which computes a weighted linear combination of
cluster prototypes, to predict feature values at certain locations. Cluster-
ing is done by taking into account the spatial auto-correlation property in
the geophysical data. Linear Combination weights are defined to reflect the
inverse distance of the unseen data to each cluster geometry. Since cluster
descriptions are strictly linked to prediction, the goal is substantially different
from our work, where cluster descriptors are a combination of prominent fea-
tures with a similar distribution. Furthermore, Appice and Malerba’s work
considers the representation space of all the observed variables. In our work,
clusters are defined within reduced subspaces of features, thus enabling the
extraction of potentially overlapping sets of clusters that may exist in differ-
ent subspaces.

13http://www.openstreetmap.org
14http://www.geonames.org
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In summary, our work merges both types of discovery with the intent
to: i) provide a dynamic big picture topology of a territory, being agnostic
to any data source, and applying a subspace clustering algorithm to group
venues having the same frequency distribution in space; ii) combine features
to better characterize an area and producing richer summaries which are a
first glance representation of what occurs on the territory.

8. Conclusion and Future Work

In this paper, we described a methodology that automatically adds a layer
over the typical cartography geographic maps, creating summaries on what
crowd sensors tell about existing venues. The summaries are a composition
of fingerprints, each being a cluster, generated by a new subspace clustering
algorithm, named GeoSubClu, that is proposed in this paper. The algo-
rithm is parameter-less: it automatically recognizes areas with homogeneous
density of similar points of interest and provides clusters with a rich charac-
terization in terms of the representative categories. We measured the validity
of the generated clusters against a human created gold standard, achieving
88.98% of F1 and outperforming the baselines. We further validated the
approach using statistical validation measures, namely SSE and Jaccard.
The results show the robustness of our approach, even though we observe
a weakness in validating the surface overlaps using the Jaccard test for the
Florence area. This is mainly due to an observed low density of POIs in the
input set. The experiments, together with the source code of the algorithm,
are publicly available at https://github.com/giusepperizzo/geosummly.
A user friendly web interface enables also to visualize the summaries being
generated at http://geosummly.eurecom.fr.

Currently, we are investigating the inclusion rate of two or more overlap-
ping fingerprints. Generally, the reduction of the fingerprint number allows
to better characterize a territory, removing potential ambiguities. We are
experimenting the inclusion and the intersection of these fingerprints at both
spatial coverage and category distribution level. Zooming in and out may
deliver a different behavior in computing the summary from the user point
of view. The intuition is that the more a user zooms out, the more coarse
grained the summary shall be. Conversely, the closer the user zooms in,
the more fine grained (i.e. detailed) the summary should be. We plan to
investigate the automatic summary creation while one is varying the zoom
level.
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The algorithm proposed in this paper has been thought to be agnostic
to the data set sparsity problem, responding properly in all cases and hence
using a small number of features (i.e. the Foursquare top categories) or
the entire taxonomy. Albeit Foursquare is one of the most popular and
widely used location-based social networks capturing user whereabouts, we
are applying GeoSubClu in a variety of use cases aiming to get geographic
insights about the living topology of an area. We are experimenting with the
3cixty Knowledge Base [24], which contains numerous geographic instances of
city user whereabouts collected from various data sources and then reconciled
(such as Milan, Nice, London). The data instances have a reach semantics
structure that favour the application of the GeoSubClu methodology. We
want to study the effect of the reconciliation in the geographic summarization
process.
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